If there anything that data engineers agree about, it’s that table compaction is important. Often one of the first big lessons that folks will learn early on is that not compacting tables can present serious performance issues: you’ve gotten your lakehouse pilot approved and it’s been running for a couple months in production and you find that both reads and writes are increasingly getting slower and slower while your data volumes have not increased drastically. Guess what, you almost surely have a “small file problem”.
I’ve previously blogged in detail about V-Order optimization. In this post, I want to revisit the topic and demonstrate how V-Order can be strategically enabled in a programmatic fashion.
With Spark and Delta Lake, just like with Hudi and Iceberg, there are several ways to enable or disable settings that impact how tables are created. These settings may affect data layout or table format features, but it can be confusing to understand why different methods exist, when each should be used, and how property inheritance works.
There’s been a lot of excitement lately about single-machine compute engines like DuckDB and Polars. With the recent release of pure Python Notebooks in Microsoft Fabric, the excitement about these lightweight native engines has risen to a new high. Out with Spark and in with the new and cool animal-themed engines— is it time to finally migrate your small and medium workloads off of Spark?
I’m thrilled to announce that my Microsoft Fabric Shape Library for Excalidraw has been published!